О курсе
Мы рекомендуем наш курс всем, кому интересен Data Science и кто делает свои первые шаги в этой области!
Наш курс – победитель премии "Stepik Awards 2019". Авторы курса – эксперты Samsung AI Center, занимающиеся задачами машинного зрения – передают свой практический опыт и интуитивное понимание принципов работы нейронных сетей для компьютерного зрения.
А еще этот онлайн-курс является частью трека по искусственному интеллекту социально-образовательной программы для вузов «IT Академия Samsung», которая стартовала в 2019 году и в настоящий момент включает 19 вузов-партнеров. Если ваш вуз хочет вступить в программу «IT Академия Samsung», пишите нам по адресу info@innovationcampus.ru.
---
В этом курсе вы сделаете первые шаги в области компьютерного зрения с методами машинного обучения. Как мы этого добьёмся?
Для начала, мы пройдём основы нейронных сетей: как же какая-то абстрактная модель мышления, помещённая в компьютер, позволила обычным программистам просто так взять, и решить нерешённую ранее задачу зрения роботов. Мы изучим архитектуру и алгоритмы настройки нейросетей, приобретём глубокое понимание всего, что происходит после нажатия "Запустить обучение". Мы разберём, как лучше представить задачу для нейронной сети, поскольку не все постановки в принципе разрешимы, и в этом нам поможет метод максимального правдоподобия.
Но это всё ещё не компьютерное зрение. В этой части курса вы погрузитесь в свёрточные нейронные сети, методы регуляризации и нормализации, которые делают реальные задачи – разрешимыми.
Кроме лекций вас ждёт 8 практических семинаров. Вы наберётесь опыта в инструментарии машинного обучения и компьютерного зрения, решите базовые задачи, и будете готовы к практическому тестированию, где вы решите серьёзную задачу в области CV/ML. И, справившись с ней, сможете получить сертификат с отличием!
Для кого этот курс
Приглашаем продвинутых в математике старшеклассников, студентов и профессионалов! Всех желающих на практике освоить базовые алгоритмы машинного обучения в области компьютерного зрения.
Начальные требования
Курс рассчитан на слушателей, которые делают первые шаги в области машинного обучения.
Что нужно, чтобы приступить к курсу?
1. Иметь базовые знания в области математической статистики.
2. Быть готовым программировать на Python.