Библиотеки Python для Data Science

Курс знакомит слушателей с основными понятиями Data Science. Мы рассмотрим базовые алгоритмы (линейная модели, деревья решений, KNN, композиции), разберем подготовку данных (очистка, генерация новых признаков и их отбор). Полученных знаний будет достаточно для решения широкого круга задач.
Beginner Level
3-5 часов в неделю
Stepik certificate

What you will learn

  • Решать задачи классификации, кластеризации и регрессии
  • Проводить чистку данных от пропусков и выбросов
  • Корректно готовить данные для модели
  • Оценивать работу моделей
  • Улучшать качество предсказаний
  • Работа с Numpy, Pandas, Sklearn, Matplotlib, Seaborn

About this course

Цели курса

  1. Разобраться в этапах проекта в Data Science
  2. Научиться решать задачи классификации, кластеризации, регрессии
  3. Усвоить тонкости работы с табличными данными через Pandas
  4. Освоить обучение моделей через Sklearn
  5. Познакомиться с подготовкой данных для моделей
    1. Очистка
    2. Кодирование признаков
    3. Генерация новых признаков
    4. Выбор признаков

Почему стоит выбрать именно этот курс

  1. В этом курсе 8 лекций с практическими упражнениями, которые покрывают основы Data Science.
  2. Решения заданий проверяются преподавателем.
  3. Поддержка преподавателя на всем пути изучения.
  4. Каждому нюансу уделяется особое внимание, информация разжевывается до мелочей и подается вам.

Какие особенности у курса

В этом курсе 8 лекций записанных лекций, которые взяты с занятий с группой студентов. Видео представленны трансляциями на youtube, где в формате живого общения рассказывается материал и даются ответы на вопросы студентов.


Что нужно будут делать

Нужно внимательно смотреть видео-лекции (60-120 минут), выполнять практические задания, которые будет проверять преподаватель,, выполнять тесты на усвоение материала с автоматической проверкой, не бояться ошибаться и экспериментировать с данными и моделями и наслаждаться процессом обучения.

Whom this course is for

Для тех, кто хочет разбираться в Data Science, кто хочет научиться корректно подготавливать данных, кто хочет решать задачи классификации, регрессии и кластеризации, кто хочет получить навык написания кода на Numpy, Pandas, Sklearn, Matplotlib, Seaborn

Initial requirements

- Основы Python

- Основы статистики

Meet the Instructors

How you will learn

Видео-лекции (60-120 минут), практические задания (с провереркой от преподавателя), тесты на усвоение материала с автоматической проверкой, поддержка проподавателя.

Course content

loading...
Certificate

Certificate

Stepik certificate

What you will get

  • навыки и знания
  • возможность отработать теорию на практике
  • 5-10 проектов в портфолио

Price

Price: RUB 4,000
Try for free
You've tried this course and realized it's not for you? That's fine, we will pay you back within 30 days from the purchase.

FAQ

Share this course

Price: RUB 4,000
Try for free